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Abstract

Independence of irrelevant alternatives (IIA) has been much studied in single-agent decision

problems. We explore its extension to models of two-sided choice and perfectly transferable

utility. We start with models with a separable logit structure, à la Choo and Siow (2006).

We first show that this model satisfies a weak version of IIA. On the other hand, we

conjecture that no separable model satisfies a stronger version of IIA. We then exhibit a

two-sided version of the “blue bus/red bus” paradox, which shows that the separable logit

model is not robust to irrelevant relabeling.
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Introduction

Independence of irrelevant alternatives (IIA) has figured prominently in at least three differ-

ent contexts in economics. Its first appearance dates back to Nash’s paper on the bargaining

problem (Nash (1950)). When discussing the representation of choice by a utility function,

Nash’s property 7 required that an optimal choice cannot become non-optimal when the

choice set is restricted to a subset that contains it. In formal terms, let C(S) denote the set

of optimal choices set from a set of alternatives. Nash required that if C(S) ⊂ T ⊂ S, then

C(T ) = C(S). While this condition is necessary and sufficient for C to be represented by a

binary relation, it may not be acyclic1. In the monograph that gave birth to social choice

theory, Arrow (1951) defined independence of irrelevant alternatives as imposing that social

preferences between a pair of alternatives only depend on the collection of individual pref-

erences over that pair. The next step was taken by Luce and Raiffa (1957) and Luce (1959)

with decision-making under risk. Luce called independence from irrelevant alternatives his

Axiom 1 (p. 6), which requires that probabilistic choice satisfy:

if R ⊂ S ⊂ T, then PT (R) = PS(R)PT (S)

where PT (S) is the probability that choice from T belongs to S. Luce described it as

“one reasonable possibility” to extend to probabilistic choice the notion that adding new

alternatives should not change preferences between existing alternatives. As is now well-

known, Luce’s IIA has stark consequences for stochastic choice: it implies the existence of

a positive function v such that for any finite set S and any alternative x ∈ S,

PS(x) =
v(x)∑
y∈S v(y)

.

If we define u(x) = ln v(x), then choice probabilities take the familiar “multinomial logit”

form

PS(x) =
exp(u(x))∑
y∈S exp(u(y))

.

1Arrow (1959) showed that if the domain of the choice correspondence C contains all finite subsets, then

IIA is necessary and sufficient for the existence of a transitive complete binary relation that represents C.
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The aim of this note is to explore the extension of IIA to a class of models of two-sided

choice, i.e. matching models. Indeed, matching models with a random utility structure

have recently gained popularity (in the wake of Dagsvik (2000) and Choo and Siow (2006))

and it is important to understand the implications carried by the random utility structure.

The literature has already pointed out that the logit specification implies implausible sub-

stitution patterns, just as it does in one-sided choice models (Graham, 2013; Choo, 2015).

Extensions have been proposed to remedy this—see Mourifié and Siow (2017), Mourifié

(2019) and Galichon and Salanié (2019). Our focus here is different: we will show that in

addition to constraining cross-elasticities, these models are prone to well-known paradoxes

tied up to the logit structure.

We will focus on one-to-one bipartite matching models with perfectly transferable utility.

In addition, we will restrict our analysis to markets in which the joint surplus is “separable”

in the sense of Chiappori, Salanié, and Weiss (2017) and Galichon and Salanié (2019). Sep-

arability is a concept developed with empiricists in mind, following the pioneering work of

Choo and Siow (2006). It assumes that conditional on observed “types”, the characteristics

of the agents that are unobserved by the analyst do not interact in the production of joint

surplus. We consider this as a first step towards a more general inquiry into IIA and related

properties in matching models.

Section 1 defines our setup and notation. We present two definitions of IIA for matching

models in section 2. Section 3 shows that weak IIA holds in the Choo and Siow (2006)

model as well as in a specific, nested extension. Section 4 is directly motivated by the well-

known blue bus/red bus example in the tradition of Debreu (1960). It shows that irrelevant

relabeling of types by the analyst may lead to incorrect predictions in the logit model.

1 Separable Matching with Transferable Utility

In all of the following, we consider frictionless bipartite matching with perfectly transferable

utility (TU). Each match is formed of two partners drawn from separate populations. For
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simplicity, we call one the “husband” and one the “wife”. Husbands are drawn from a

population of men indexed by i ∈ I, and wives from a population of women indexed by

j ∈ J . We call i the identity of a man, as opposed to his type x ∈ X . Identities are

observed by all participants in the market. On the other hand, the econometrician only

observes types, which partition the set of identities. We will write i ∈ x or xi = x to denote

that the man of identity i has type x. The corresponding notation for women will be j ∈ y

or yj = y, where y ∈ Y. We do not restrict the sets I,J ,X and Y at this stage. We will

denote FI (resp. FJ ) the cumulative distribution function of i (resp. j.)

Note here that some of the type information available to the econometrician may well

be payoff-irrelevant. This will matter in section 4.

A match between a man i and a woman j generates a joint surplus Φ̃ij . This is shared

between the two partners so that they achieve individual match surpluses Ũij , Ṽij = Φ̃ij−Ũij ,

over and above the utilities they get by remaining single. We denote singlehood as “partner

0”, and we will use the notation X0 = X ∪ {0} and Y0 = Y ∪ {0}.

A matching is a collection of numbers 0 ≤ µij ≤ 1 that represent the probability that

man i and woman j are matched. It must be feasible:

∀i,
∫
µijdFJ (j) ≤ 1 and ∀j,

∫
µijdFI(i) ≤ 1.

Our equilibrium concept is stable matching. A stable matching is a feasible matching that

maximizes total joint surplus ∫ ∫
µijdFI(i)dFJ (j).

Associated to the feasibility constraints are multipliers ũi and ṽj ; the corresponding first-

order conditions are

Φ̃ij ≤ ũi + ṽj for all i, j,

with equality for any match that has non-zero probability in equilibrium (µij > 0). Such

an equilibrium match must split the surplus in such a way that

Φ̃ij = ũi + ṽj
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for some admissible values of the multipliers.

Since econometricians only observe types, their data can only consist of

• the numbers nx (resp. my) of available men (resp. women) for every type x ∈ X (resp.

y ∈ Y)

• for each pair (x, y) the numbers µxy of matches between men of type x and women of

type y.

They could also observe some statistic on the joint surplus of (x, y) matches. This

could be the distribution of the joint surplus of all observed (x, y); or, less ambitiously, its

average value, or some statistic like the number of divorces that brings some information

on outcomes. We shall assume away such information in this paper. We will denote µx0

the number of single men of type x, which is obtained by subtracting the total number of

their matches from nx.

Moreover, we will assume that conditional on observed types, interactions between the

unobserved characteristics of the partners do not create (or destroy) joint surplus. More

precisely, we state:

Assumption 1 (Separability). Equivalently:

(i) the joint surplus from a match between man i ∈ x and woman j ∈ y can be written as

Φ̃ij = Φxy + εiy + ηjx.

(ii) if men i and i′ both have type x and women j and j′ both have type y, then

Φ̃ij + Φ̃i′j′ = Φ̃ij′ + Φ̃i′j .

Separability was defined in Chiappori, Salanié, and Weiss (2017) and underlies the

general analysis of TU models of Galichon and Salanié (2019). We refer the reader to

these papers for a discussion. What matters most here is that separability allows us to
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decompose the two-sided equilibrum into a family of one-sided discrete choice problems

with endogenous, type-dependent prices. More formally, there exists a decomposition Φxy =

Uxy + Vxy of the types-driven part of joint surplus such that in equilibrium2,

• man i is matched with a partner of the type y that maximizes (Uxit + εit) over t

• woman j is matched with a partner of the type x that maximizes (Vzyj + ηjz) over z.

The analogy with the one-sided problem is clear; but the crucial difference is that the

type-dependent parameters Uxy and Vxy are endogenous, unlike the “mean utilities” of the

random utility models. This will require adapting the definition of IIA.

2 IIA in Matching Models

In matching with transferable utilities, as in any equilibrium model, prices and allocations

reflect value and scarcity. Intuition suggests that if for instance a man i belongs to a type x

that is highly valued, in the sense that the values of Φxy are high for all potential types of

partners y, then this man will do relatively well on the marriage market. Since the market-

clearing prices are reflected in the decomposition Φ = U + V , this is simply saying that

such men tend to marry women who are also highly valued, and to appropriate a large share

of the joint surplus in their marriage. The same conclusion obtains if type x is relatively

rare, that is if nx is relatively small.

Now consider the ratio µxy/µxt for two types of women y 6= t. Dividing through by nx,

this can also be written as the ratio of the probabilities that any given man of type x will

marry a woman of type y or t. We will denote µXy|x the probability that a man of type x

marries a woman of type y (and µYx|y the probability that a woman of type y marries a man

of type x). Then µxy/µxt is the odds ratio for men of type x,

RX (y, t;x) =
µXy|x

µXt|x
.

2With obvious adaptations to account for unmatched partners.
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In a one-sided model, IIA requires that this ratio be independent of the set of women in

the marriage market, as long as this set includes some women of type y and some women

of type t. The previous paragraph suggests that this cannot hold in a matching market: at

a minimum, the odds ratio must depend on the numbers of women of types y and t.

Remember that the primitives of a separable matching model are the numbers of men

and women of each type (nx) and (my); the values of the type-dependent joint surplus

(Φxy); and the distributions of the unobserved terms (εiy) and (ηjx). We propose a weaker

definition of IIA:

Property 1 (Weak IIA for separable matching with transferable utilities). Fix the param-

eters (Φxy) and the distributions of the unobserved terms εiy and ηjx.

The model satisfies weak IIA if and only if for all types of men x and z in X and all

types of women y and t in Y, the double odds ratio

RX (y, t;x)

RX (y, t; z)

is independent of all subpopulation sizes (nx) and (my).

Note that this ratio is simply
µxyµzt
µxtµzy

.

Let us define the odds ratio RY(x, z; y) for women of type y as µYx|y/µ
Y
z|y. Then the double

odds ratio in Property 1 can also be written as

RY(x, z; y)

RY(x, z; t)

so that the definition applies to both sides of the market.

It is not obvious a priori that there exist separable matching models in which Property 1

holds; but as we will see in section 3, the Choo and Siow (2006) model satisfies it, and so

does one specific class of nested logit models.

Weak IIA implies more specific restrictions; for instance, the elasticity of PrS(x) with

respect to the mean utility u(y) of an element y of S is the same for all y ∈ S − {x}. This
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is a very unappealing restriction to impose on a demand system. Partly as a consequence,

the empirical literature moved away from the multinomial logit model; it adopted variants

in which IIA does not hold, such as mixed multinomial logit. We will focus in section 4 on

a more fundamental paradox, inspired by the famous blue bus-red bus example.

A valid criticism of the notion of IIA we have adopted in property 1 is that since it does

not include the option of remaining unmatched, it leaves out one of the marital options. To

remedy this, we introduce a strong IIA property as follows:

Property 2 (Strong IIA for separable matching with transferable utilities). Choose the

parameters (Φxy) and the distributions of the unobserved terms εiy and ηjx.

The resulting model satisfies strong IIA if and only if the following two sets of conditions

are met:

(i) for all types of men x and z in X and all men’s marital options y and t in Y0, the

double odds ratio
RX (y, t;x)

RX (y, t; z)
=
µxyµzt
µxtµzy

is independent of all subpopulation sizes (nx) and (my); and

(ii) for all types of women y and t in Y and all women’s marital options x and z in X0,

the double odds ratio
RY(x, z; y)

RY(x, z; t)
=
µxyµzt
µxtµzy

is independent of all subpopulation sizes (nx) and (my).

This is a strong concept; so strong that even the baseline model of Choo and Siow does

not satisfy it as we shall next see.

3 IIA in Separable Models

Choo and Siow (2006) added two assumptions to the separable model: that markets are

“large” and that the unobserved terms of Assumption 1 are iid draws from a standard type-I

extreme value distribution.
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They showed that it generates a very convenient multinomial logit form for the separable

model. More precisely, the Choo and Siow model has

µy|x =
exp(Uxy)∑
t exp(Uxt)

µx|y =
exp(Vxy)∑
t exp(Vty)

Uxy + Vxy = Φxy

where the (Uxy) and the (Vxy) are the equilibrium quantities defined in section 1. In addition,

in all models of this class we have

µxyµzt
µxtµzy

= exp ((Φxy + Φzt − Φxt − Φzy) /2) ,

which is independent of the numbers of men and women. As a consequence, Property 1

holds in all of them.

Proposition 1. The Choo and Siow model satisfies weak IIA as defined in Property 1.

Note that the Choo and Siow model is not the only separable model that satisfies weak

IIA. Consider a separable model where the heterogeneity is a nested logit on both sides

of the market, with only two nests: one for singlehood, another one for all other marital

options. The coefficient of the nests is λ on the side of men, γ on the side of women; the

Choo-Siow model obtains for λ = γ = 1. It is not hard to see that

µxy =
µ

1/(λ+γ)
x0(

my − µ0y

) 1−λ
λ+γ

µ
1/(λ+γ)
0y(

my − µ0y

) 1−γ
λ+γ

exp

(
Φxy

λ+ γ

)
.

This implies that logµxy −
Φxy
λ+γ is additively separable between x and y;

µxyµzt
µxtµzy

= exp ((Φxy + Φzt − Φxt − Φzy) /(λ+ γ)) ,

and this model too satisfies weak IIA. We have not found any other separable model for

which weak IIA holds. Conversely, the dynamic extension of the Choo and Siow (2006)

model by Choo (2015) shares its logit structure but it does not exhibit weak IIA, as shown
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by inspecting his formula (3.1). This is due to the combination of time discounting and a

finite horizon.

It is straightforward to see that Choo and Siow’s model does not satisfy strong IIA.

Indeed, using the definition with y = 0 in Choo and Siow’s model gives

RX (0, t;x)

RX (0, t; z)
=
µx0

µz0

µzt
µxt

=

√
µx0

µz0
exp ((Φzt − Φxt)/2)

which clearly depends on the subpopulation sizes. A similar calculation shows that the

nested logit model described above does not satisfy IIA for any value of λ and γ. In fact, we

conjecture that no separable model can satisfy strong IIA. The intuition is simple. Adding

one man to the population of type x must reduce the average equilibrium utility of this

type of men. In separable models, this must reduce all µXt|z for all z, t > 0 and increase

the probabilities of singlehood for all men3. Therefore all ratios µzt/µz0 must decrease; but

they should decrease most for men of type x.

4 A modified blue-bus/red-bus example

In his review of Luce (1959), Debreu (1960) showed how IIA leads to counterintuitive pre-

dictions. His example used classical music recordings; we will give it in the form popularized

by McFadden (1974) (p. 113) as the “blue bus/red bus example”. In this story, commuters

initially can only go to work with their car or with a blue bus; and a third of them choose to

take the bus. Suppose that the bus company adds red buses to its fleet, and the population

has no color preferences; then one would not expect the proportion of bus trips to change.

But according to IIA, car trips should still be twice more frequent than trips with blue

buses, and also than trips with red buses. This is only possible if the proportion of car trips

becomes one half. To put it differently, IIA suggests that 25% of car commuters should

start taking the bus simply because of a color change that (we assumed) means nothing to

them.

3This follows from the formulæ in section IV.A of Galichon and Salanié (2017).
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What is really at stake in this story is that simply splitting options should not change

market shares. What matters to commuters is the essence of a bus, not its payoff-irrelevant

attributes.

Matching markets are two-sided by their very nature; this is reflected in the endoge-

neous nature of the decomposition Φ ≡ U +V . Still, it is not hard to construct illustrations

similar to Debreu’s example. Because “mean utilities” are endogenous, notation and char-

acterization take more work; but the intuition is similar. The following example shows

that the multinomial logit model of Choo and Siow (2006) indeed generates similar choice

paradoxes.

Let x and y consist of education, with two levels C (college) and N (no college), and

suppose that the matrix Φ of Assumption 1 has

exp(ΦNN/2) = a ; exp(ΦNC/2) = exp(ΦCN/2) = b ; exp(ΦCC/2) = c,

where a, b, c are arbitrary positive numbers.

Call this the original model. Now let us distinguish two types of college graduates: those

(Ce) whose Commencement fell on an even-numbered day and those (Co) for whom it was

on an odd-numbered day. We will assume that this difference is payoff-irrelevant, so that

exp(ΦNCi/2) = exp(ΦCin/2) = a for i = e, o

and exp(ΦCiCj ) = c for i, j = e, o. We will also assume that the population of college

graduates is split evenly across Commencement days: nCe = nCo and mCe = mCo .

We now show that adding the irrelevant Commencement distinction in this revised model

is “equivalent” to changing the joint surplus Φ of the original model. More precisely:

Proposition 2. In the revised model, define µCC =
∑

i,j=e,o µCiCj the total number of

matches between college-educated partners; µCN = µCe,N + µCo,N the total number of

matches between college-educated men and non-college women (and symmetrically µNC);

and µC0 = µCe,0 + µCo,0 the total number of college-educated men who remain single (and

symmetrically µ0C).
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In equilibrium, these numbers are identical to the equilibrium matching patterns of the

original model after substituting Φ′ to Φ, where

exp(Φ′
NN/2) = a ; exp(Φ′

NC/2) = exp(Φ′
CC/2) = b

√
2 ; exp(Φ′

CN/2) = 2c.

Proof: see the Appendix.

It is easy to check that substituting Φ′ to Φ does not affect C = ac/b2. On the other

hand, it does change equilibrium marriage patterns. Suppose for instance that nC = mC

and nN = mN : there are as many men as women in either education group. Then all

equations are symmetric in gender, and we must have µC0 = µ0C and µN0 = µ0N , both in

the original and in the revised model. The equations for men in the original model simplify

to:

nC = µC0(1 + c) + b
√
µN0µC0

nN = µN0(1 + a) + b
√
µN0µC0.

Suppose moreover that the college-educated are half of the population in each gender:

nN = nC ≡ n and mN = mC ≡ m, so that by subtraction µC0(1 + c) = µN0(1 + a). Then

we obtain in the original model

µC0 = µ0C =

√
1 + a

1 + c

n

b+
√

(1 + a)(1 + c)

µN0 = µ0N =

√
1 + c

1 + a

n

b+
√

(1 + a)(1 + c)

µNN = aµN0

µNC = µCN =
bn

b+
√

(1 + a)(1 + c)

µCC = cµC0.
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In the revised model, b→ b
√

2 and c→ 2c. Remember that a, b and c are exponentials

and therefore positive. Since µC0 is a decreasing function of both b and c, it must be lower

in the revised model. µNC is an increasing function of b/
√

1 + c; but

b
√

2/
√

1 + 2c > b/
√

1 + c

and µNC must be higher. Since µN0 + µNN + µNC is fixed at m and µNN/µN0 = a is

unchanged, it follows that both µNN and µN0 must be lower. Finally,

µCC = n−µC0−µCN =
n

b+
√

(1 + a)(1 + c)

(√
1 + c− 1√

1 + c

)
=

n

b+
√

(1 + a)(1 + c)

c√
1 + c

.

We have just seen that c√
1+c

increases by a factor of more than
√

2. The denominator

b +
√

(1 + a)(1 + c) increases by less, since
√

1 + c increases by a factor smaller than
√

2

and nb by just
√

2. Therefore µCC must increase.

To recapitulate:

• There are fewer college graduate singles. This is the equivalent of more people taking

the bus in Debreu (1960): mere payoff-irrelevant splits increase probabilities of choice.

• More surprisingly, there are also fewer non-college singles; but the fall in singles is

smaller than for college graduates.

• There are more matches between N and C, fewer between N and N , and more between

C and C.

• Since the expected utility is simply minus the logarithm of the probability of single-

hood in the CS model, expected utilities increase at each level of education.

These are clearly unappealing properties: since the Commencement date is irrelevant

to all market participants, a “more reasonable” model would imply none of these changes.

This example shows that the Choo and Siow model is not robust to irrelevant labeling:
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splitting college graduation according to the payoff-irrelevant parity of the Commencement

day changes matching patterns µ and expected utilities for college graduates. In econometric

terms, this results in a misspecified model and inconsistent estimates.

This begs a question: are there any separable models where taking onboard irrelevant

type labels does not cause misspecification? Define Generalized Random Coefficients models

(GRC) to be those separable models for which there exist real-valued random variables εi

and ηj and functions ζxy and ξxy with

∀x ∈ X ,∀y ∈ Y0, ε
i
y = ζxy(εi) and ∀y ∈ Y,∀x ∈ X0, η

j
x = ξxy(ηj),

In these models, the random utilities associated to any pair of alternatives are perfectly

dependent. GRC models can be viewed as an extension of the random coefficient models

popular in empirical IO, with the important restriction that separability rules out an “id-

iosyncratic” term of the form νij . The GRC models extend the Random Scalar Coefficients

models of Galichon and Salanié (2019), in which the functions ζxy and ξxy are linear and

the random variables εi and ηj are scalar.

It is easily seen that Generalized Random Coefficients models do not satisfy IIA. On

the other hand, they are robust to the “excessive type-splitting” in our Commencement

day example, as long as the econometrician allows for a flexible specification of the Φ, ξ

and ζ components that makes it possible for the “commencement day” type to have a zero

coefficient.

Concluding Remarks

We have conjectured that no separable model can satisfy strong IIA. In contrast, Dagsvik

(2000) proposed a model which is not separable. Its “marriage matching function” is

µxy = µx0µ0y exp(Φxy),
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where µx0 and µ0y are adjusted by the marginal constraints

nx = µx0 +
∑
y∈Y

µx0µ0y exp(Φxy)

my = µ0y +
∑
x∈X

µx0µ0y exp(Φxy).

This model has very different properties from separable models. To cite just one major

difference: as all subpopulations scale up homothetically, marriage rates increase. Thus

while all separable models have constant returns to scale, Dagsvik’s exhibits increasing

returns to scale.

It is easy to verify that strong IIA holds in Dagsvik’s model. We suspect that it may

be the only tractable empirical matching model that satisfies strong IIA.
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Appendix

A Proof of Proposition 2

The results in Choo and Siow show that given numbers (nC , nN ,mC ,mN ) of men and

women, the equilibrium in the original model has

nC = µC0 + µCN + µCC (A.1)

nN = µN0 + µNN + µNC

mC = µ0C + µNC + µCC

mN = µ0N + µNN + µCN

µCN = b
√
µC0µ0N (A.2)

µNC = b
√
µN0µ0C

µCC = c
√
µC0µ0C (A.3)

µNN = a
√
µN0µ0N .

Take college-educated men for instance. Equation (A.1) requires that the number of

college-educated men who remain single and who marry any type of woman must add up

to the number of college-educated men available. Substituting equations (A.2) and (A.3)

gives

µC0 +
(
b
√
µ0N + c

√
µ0C

)√
µC0 = nC .

As noted by Graham (2013) and Decker, Lieb, McCann, and Stephens (2012), this is a

quadratic equation in
√
µC0, given the numbers of single women µ0N and µ0C . They

showed that the whole system can be rewritten as the four coupled quadratic equations in
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the square roots of the numbers of singles:

nC = µC0 +
(
b
√
µ0N + c

√
µ0C

)√
µC0

nN = µN0 +
(
a
√
µ0N + b

√
µ0C

)√
µN0

mC = µ0C +
(
b
√
µN0 + c

√
µC0

)√
µ0C

mN = µ0N +
(
a
√
µN0 + b

√
µC0

)√
µ0N . (A.4)

Now let us introduce the payoff-irrelevant Commencement distinction. Under our as-

sumptions, the quadratic equation that defines the equilibrium for college-educated men

whose Commencement was on an even day take the form

µCe0 +
√
µCe0

(
c
(√
µ0Ce +

√
µ0Co

)
+ b
√
µ0N

)
= nCe = nC/2.

and that for college-educated men whose Commencement was on an odd day is

µCo0 +
√
µCo0

(
c
(√
µ0Ce +

√
µ0Co

)
+ b
√
µ0N

)
= nCo = nC/2.

These two equations are identical; and since they have only one feasible root, they imply

µCe0 = µCo0. Similarly, µ0Ce = µ0Co . For men as for women, there are just as many single

college graduates in both Commencement groups.

This in turn implies that µCiCj = c√µCi0µ0Cj cannot depend on i, j = e, o; and that

µCiN = b
√
µCi0µ0N and µNCi cannot depend on i = e, o.

Putting things together, and using the notation defined in the statement of the Propo-

sition, we obtain

µCC = 4c

√
µC0

2

µ0C

2
= 2c
√
µC0µ0C

µCN = 2b

√
µC0

2
µ0N = b

√
2
√
µC0µ0N

µNC = 2b

√
µN0

µ0C

2
= b
√

2
√
µN0µ0C

µNN = a
√
µN0µ0N .

17



This gives the equilibrium equations

nC = µC0 + b
√

2
√
µC0µ0N + 2c

√
µC0µ0C

nN = µN0 + a
√
µN0µ0N + b

√
2
√
µN0µ0C (A.5)

and two symmetric equations for women. But the system (A.4) had

nC = µC0 + b
√
µC0µ0N + c

√
µC0µ0C

nN = µN0 + a
√
µN0µ0N + b

√
µN0µ0C . (A.6)

Comparing (A.5) and (A.6) shows that adding the irrelevant Commencement distinction

changes the equilibrium matching patterns as if we had changed the joint surplus Φ to Φ′.
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