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Pierre-André Chiappori† Dam Linh Nguyen‡ Bernard Salanié§
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Abstract

Several recent papers have analyzed matching markets under the dual assump-
tion of perfectly transferable utility and a separable joint surplus. Separability
rules out any contribution to the joint surplus of a match of interactions between
characteristics of partners that are unobserved by the analyst. Since it may be
unrealistic in some settings, we explore the consequences of mistakenly imposing
it. We find that the biases that result from this misspecification grow slowly with
the magnitude of the contribution of the interaction terms. In particular, the
estimated complementarities in the Choo and Siow (2006) model are remarkably
robust to the inclusion of interaction terms.

Introduction

The empirical analysis of matching markets has made considerable progress in recent
years. We will focus here on markets where partners exchange transfers freely. In
the usual terminology, we study matching markets with perfectly transferable util-
ity (hereafter “TU”). In most matching markets, observationally identical agents end
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up with very different matching outcomes: some may be unmatched, others will
be matched to partners with variable observable characteristics. This can be ra-
tionalized by introducing frictions, unobserved heterogeneity, or a mixture of both.
As explained in Chiappori and Salanié (2016), these two groups of rationalizations
have essentially identical predictions for cross-sectional data; they can only be distin-
guished with data featuring transitions, which are often unavailable to the analyst.
We choose here to model the dispersion of outcomes using unobserved heterogeneity.
More precisely, we start from the class of models pioneered by Choo and Siow (2006),
which incorporates a quasi-additive error structure called separability by Chiappori,
Salanié, and Weiss (2017). Galichon and Salanié (2017, 2019) study the properties of
separable models in much more detail. Beyond Choo and Siow (2006), this framework
has been applied by Chiappori, Salanié, and Weiss (2017) to changes in the marital
college premium in the US. It has been extended to continuous types by Dupuy and
Galichon (2014) to study the contribution of personality traits to marital surplus; by
Galichon, Kominers, and Weber (2019) to imperfectly transferable utilities; and by
Ciscato, Galichon, and Goussé (2019) to non-bipartite matching in order to compare
same-sex and different-sex marriages.

By definition, separability rules out the interaction between partners’ unobserved
heterogeneity in the production of joint surplus. While it is definitely a very useful
assumption, it is also restrictive, especially if the set of characteristics available to
the analyst is small. A standard intuition would suggest that this may not matter
much if unobserved characteristics are drawn independently of observed character-
istics. However, we are dealing here with a two-sided market where we cannot just
transpose this intuition. The goal of this note is to explore the consequences of relax-
ing separability on equilibrium matching patterns, utilities, and division of surplus.
We will also quantify the misspecifications that result from mistakenly assuming
separability when estimating a model.

Our first group of findings shows that non-separability impacts matching patterns
and utilities in ways that, ex post, seem reasonable. It takes a rather large amount
of non-separability to see a qualitative difference from the separable case, however.
Second, we find that when we estimate a non-separable model as if it were separable,
the estimated complementarities in surplus are surprisingly robust. This is reassuring
since we have known since Becker (1973) that complementarities play a crucial role
in TU matching markets. Our conclusions are strongest when the distributions of
the observable characteristics of the partners are similar (“symmetric margins”). As
we will see, non-separabilities matter more when markets are very unbalanced.

The remainder of the paper is organized as follows. Section 1 introduces the set
up, including the model and methods. Section 2 presents our simulation protocol
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and section 3 discusses the results. We conclude with some directions for further
work.

1 Model and Methods

We focus throughout on a bipartite one-to-one model of matching with unobserved
heterogeneity and perfectly transferable utilities. Since it is similar to Becker’s “mar-
riage market”, we will use that terminology and refer to potential partners as “men”
and “women”. Our framework easily accommodates other interpretations. We main-
tain some of the standard assumptions: matching is frictionless and all potential
partners have the same information. The analyst only observes a subset of individ-
ual characteristics.

1.1 The Model

To make things as simple and transparent as possible, each individual has only one,
binary observed characteristic. To continue with our analogy to the marriage market,
we refer to this observable variable as the education of the individual, which we code
as 1 for “high school or less” and 2 for “at least some college”. For simplicity, we will
refer to them as high-school (HS) and college (CG).

Men are indexed by i P I � t1, 2u and women by j P J � t1, 2u. Each man i
(resp. woman j) has an education xi (resp. yj) in t1, 2u. This is observable to all
men, all women, and to the analyst. When a man i and a woman j marry, their
match generates a joint surplus Φ̃ij which they can share freely. Singles match to
“0”: a single man i attains a utility of Φ̃i0 and a single woman j attains Φ̃0j.

1.1.1 Separability

The separable model restricts the form of the surplus Φ̃ij. It imposes that there exist
a matrix Φ � pΦxyqx,y�1,2 and random variables εi � pεi0, εi1, εi2q and ηj � pηj0, ηj1, ηj2q
such that

Φ̃ij � Φxi,yj � εiyj � ηjxi
(1)

within any match, and that single men and women get Φ̃i0 � εi0 and Φ̃0j � ηj0
respectively. Moreover, the random vectors εi (resp. ηj) are drawn independently of
each other, conditional on xi (resp. yj).

Separability is best viewed through the lens of an ANOVA decomposition: it
requires that conditional on the observed types of the partners, interactions between
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their unobserved types do not contribute to the variation in the surplus. It does
not rule out “matching on unobservables”: a man i of education x and a woman j
of education y are more likely to marry if his εiy and her ηjx take higher values. As
shown by Chiappori, Salanié, and Weiss (2017), separability implies that if this man
and this woman do marry in equilibrium, he gets utility

Uxy � εiy

and she gets Vxy � ηjx, where the split Uxy � Vxy � Φxy is determined in equilibrium.
Therefore man i would be equally happy with any other woman of education y and
woman j would be equally happy with any other man of type x. Galichon and
Salanié (2017, 2019) study the class of separable models in more depth. They derive
identification results and propose estimators.

As can be seen from this brief discussion, separability is more restrictive when the
data contain little information on types and/or the unobserved types are relevant to
the application under study. It is therefore important to evaluate the consequences
of its failure, starting from the most popular separable model.

1.1.2 The Choo and Siow Specification

The best-known and most convenient separable model is the“multinomial logit” form
popularized by Choo and Siow (2006). They assumed that each component of the
vectors εi and ηj is drawn independently from a centered standard type I extreme
value distribution; and that the number of individuals in each education category is
very large. They showed that in this “large market” equilibrium, the number µxy of
marriages between men of education x and women of education y can be written as

µxy � ?
µx0µ0y exppΦxy{2q

where µx0 (resp. µ0y) is the number of men of education x (resp. women of education
y) who are single in equilibrium.

This gives 4 equations in 8 unknowns; the system is completed by the scarcity
constraints

Ix �
¸

y�1,2

µxy � µx0

Jy �
¸

x�1,2

µxy � µ0y

for x, y � 1, 2, where Ix (resp. Jy) denotes the number of men of education x (resp.
women of education y) and I1 � I2 � I, J1 � J2 � J.
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Galichon and Salanié (2019) show how given the “margins” pIxq, pJyq and the
surpluses Φ̃ij, Φ̃i0, Φ̃0j, this system of equations can be solved very efficiently using
an Iterative Projection Fitting Procedure (IPFP).

The Uxy � Vxy � Φxy split referred to in the previous subsection takes the simple
form

Uxy � log
µxy

µx0

Vxy � log
µxy

µ0y

;

and the average utilities1 of men of education x and women of education y are
decreasing functions of their singlehood rates:

ux � � log
µx0

nx

vy � � log
µ0y

my

.

The Choo and Siow (2006) specification has been criticized on a number of grounds;
see for instance Galichon and Salanié (2017, 2019), as well as Mourifié (2019) and
Mourifié and Siow (2017) for extensions that reach beyond separable models. Since
it is so simple and has been widely used, it is a natural benchmark and we will adopt
it as a starting point in this paper.

1.1.3 Beyond Separability

There are of course many ways to add non-separability to the Choo and Siow specifi-
cation. The simplest one is to generate a matrix ν � pνijqi�1,...,I;j�1,...,J of independent
draws from some mean-zero distribution and to take νij to represent a “pair-specific”
preference shock. This obviously does not apply to singles, for whom we keep the
same specification as Choo and Siow.

We will therefore simulate matching markets whose surplus is given by:

Φ̃ij � Φxi,yj � τ
�
εiyj � ηjxi

	
� σνij. (2)

This would be exactly the separable surplus in (1) if we had τ � 1 and σ � 0. The
total variance of the surplus in the separable model is 2; we ensure that it is the same
in the non-separable model by imposing τ 2 � 1 � σ2{2. This implies that σ must

1Here “average” means “in expectation over the unobserved type”.
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take values in r0,
?

2s. To put it differently, it is tempting to define a “coefficient
of determination” by R2 � σ2{2. It represents the fraction of the total variation in
the joint surplus that is explained by the non-separable component (the pair-specific
individual preferences νij) for given xi and yj. Our simulations will cover the whole
range from R2 � 0 to R2 � 1.

1.2 The Methods

We do not know of any study of the properties of matching under non-separability,
even in the limit case where R2 � 1. However, we state below two results and two
conjectures.

Our first result builds on standard properties of linear programs in Euclidean
spaces. As is well-known, the solution to any such program is generically unique and
robust to small changes in the parameters. To put it more formally, define a general
linear program as

max
xPIRn

c1x s.t. Ax ¤ b
and assume that A and b define a non-empty constrained set. Then the problem has
a solution set xpA, b, cq. For a generic choice of pA, b, cq, the solution is a singleton;
and if pA1, b1, c1q is close enough to pA, b, cq,

xpA1, b1, c1q � xpA, b, cq.

Whether it is separable or not, TU matching is an instance of a linear program;
and it is finite-dimensional if the number of potential partners is finite. Therefore
for a generic draw of the parameters pΦ̃, I,Jq, the optimal matching is a piecewise
constant function of σ. In particular, it is generically the same for fully separable
and for almost separable models:

Result 1: in finite markets, generically (for almost all draws), there is a σ̄ such
that the optimal matching is the same for all 0 ¤ σ   σ̄.

Result 1 exploits the fact that in finite markets, any statistic of the model that
is a continuous function of σ is locally constant. This does not extend to the “large
markets” limit that is usually assumed in the empirical applications of separable
matching models: then such statistics become smooth functions of σ. Our second
result states that for small σ, these statistics (and in particular any misspecification
bias) are of order Opσ2q for small σ when the non-separable compomnent is drawn
from a distribution that is symmetric around zero.
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Result 2: in large markets, if the distribution of ν is symmetric around zero then
the effects of non-separability are in σ2 for small σ.

The proof of result 2 relies on the fact that in large markets, the empirical distribu-
tion of all draws of the νij component converges to its generating distribution. If the
latter is symmetric, then changing all σνij to p�σqνij cannot affect the equilibrium
in the large market limit2. A fortiori, all statistics computed on the equilibrium must
be locally even functions of σ. The equilibrium matching is a smooth function of σ
in the limit; therefore its difference with the equilibrium matching of the separable
model must be at most Opσ2q. We conjecture that a less straightforward argument
would yield the following, stronger result:

Conjecture 1: the effects of non-separability are at most in Opσ2q for small σ.

In general, adding a non-separable mean-zero term in a separable model is akin to
increasing the opportunities for successful matches. By making the market “thicker”,
it increases the probabilities of all kinds of matches: we expect (and our simulations
will confirm) µ11, µ12, µ21, and µ22 to be larger, and µ10, µ01, µ20 and µ02 to be smaller,
than in the fully separable model. On the other hand, since we are adding random
terms that are distributed independently of partners’ observed types, there is no
obvious reason why the probabilities of non-diagonal matches (µ12 and µ21) should
increase much differently than those of diagonal matches (µ11 and µ22). In particular,
the log-odds-ratio

log
µ11µ22

µ12µ21

may not be so different in non-separable models. In the Choo and Siow (2006)
specification that we use to estimate the parameters of the model, this ratio identifies
with the “supermodular core” defined in Chiappori, Salanié, and Weiss (2017), which
in this simple case is simply the double difference

D2Φ � Φ11 � Φ22 � Φ12 � Φ21.

From this admittedly imprecise argument we derive the following conjecture:

Conjecture 2: mistakenly assuming separability generates “small” misspecifica-
tion biases on the estimated supermodular core D2Φ of the joint surplus.

2We skip here on the normalizations that are needed to rescale the non-separable model as the
number of individuals grows without bounds—see Menzel (2015) for a thorough analysis.
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2 Monte Carlo Setup

2.1 Simulation Parameters

We simulate average-size samples of individuals with varying characteristics and
matching preferences.

Our simulation framework takes in 1,000 individuals with a fifty-fifty split between
men and women3. With respect to the allocation of educational levels, we examine
both symmetric and asymmetric margins. In the symmetric case, there are 250 men
and 250 women in each of the two groups (HS and CG). The asymmetric scenario
assumes a larger number of college educated women (375) than men (125); conversely,
it has a smaller number of high-school educated women (125) than men (375).

Recall that we defined in 1.1.3 a “non-separability”R2. We calibrate our scenarii
so that this R2 takes values of 0, 0.2, 0.4, 0.6, 0.8, and 1. This covers the range from
the fully separable Choo and Siow (2006) model to a “fully random” surplus (drawn
independently of the observed types). The intermediate cases represent a mildly non-
separable model (R2 � 0.2, 0.4) and a strongly non-separable one (R2 � 0.6, 0.8).

2.2 Modularity and Distribution

All of our simulations pre-impose a supermodular and symmetric systematic surplus
function Φ. We distinguish two cases: “small modularity”, with

Φ �
�

0.5 1.0
1.0 1.6




and “large modularity”, where we use

Φ �
�

0.5 1.0
1.0 2.5



.

Note that the only difference lies in the surplus generated by a couple of college-
educated partners, which is larger in the latter case. As a consequence, the super-
modular core

D2Φ � Φ11 � Φ22 � Φ12 � Φ21

equals 0.1 with small modularity and 1.0 with large modularity.
As a result of selecting two different specifications of modularity and two contrast-

ing population margins, we arrive at four distinct calibrations of the variance of the

3We will also report more briefly on a scaled-down population of 200 individuals.
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systematic surplus Φ. In the “large market” limit of the separable Choo and Siow
(2006) model when R2 � 0, the estimate of the variance of Φ in the case of small
modularity is about 0.357 with symmetric margins and roughly 0.336 with asymmet-
ric margins. In the case of large modularity, they are more than twice as high: about
0.856 with symmetric margins and roughly 0.716 with asymmetric margins.

To complete the description of our simulation, we need to describe the specification
of the ε, η, and (for the non-fully separable cases R2 ¡ 0) also ν. We choose to draw
all εiy, η

j
x, and νij independently from the centered standard type I extreme value

distribution such that when R2 � 0, this is just the Choo and Siow (2006) model;
scenarii with positive R2 explore its robustness to deviations from separability.

For each simulation scenario, we generate 1,000 datasets. Table 1 summarizes the
simulation scenarii.

Population: 1,000 (Separable) R2 � 0
Draws: 1,000 (Non-Separable) R2 � 0.2, 0.4, 0.6, 0.8, 1
Modularity: Small or Large

Symmetric Margins Asymmetric Margins

Share of Share of
Count Population Count Population

Men HS (x � 1) 250 25% 375 37.5%
Men CG (x � 2) 250 25% 125 12.5%

Women HS (y � 1) 250 25% 125 12.5%
Women CG (y � 2) 250 25% 375 37.5%

Table 1: Simulation Parameters

3 Monte Carlo Results

The combination of six values of R2, symmetric or asymmetric populations, and
two modularity subcases generates 24 different scenarii. As going through all of our
results would quickly bore the reader, we focus on the most striking ones. Sometimes
we only show plots for the small modularity/symmetric margins case to save space.

With non-separable surplus, the only way we know of solving for the equilibrium
matching is to solve the linear programming problem associated with the primal
(maximizing the total surplus) or dual (minimizing the sum of utilities under the
stability constraints). We used the R interface of the free academic version of the
Gurobi software4 for this purpose. The algorithm converges very robustly. Even

4Gurobi (2019).
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with our relatively small populations of 1,000 individuals, each run requires several
gigabytes of memory. This stands in contrast with the separable case, for which very
efficient methods exist—most notably the IPFP algorithm of Galichon and Salanié
(2019).

The R2 � 0 simulation serves as our benchmark, since in that case the model
is well-specified. Biases and inefficiencies introduced by the misspecifications for
R2 ¡ 0 will show up in a translation and a spreading out of the estimated density of
our estimators of the four elements of the Φ matrix, and of the supermodular core
D2Φ.

Figures 1 and 2 plot the distributions of the estimated Φ̂xy for respectively px, yq �
p1, 1q, p1, 2q, p2, 1q, and p2, 2q. As our discussion in section 1.2 suggested, the estima-
tors have a positive bias that grows with the extent of the non-separability. This
reflects the growing thickness of the market and the resulting higher probability of
finding a suitable partner. This is apparent in Figure 3: as the joint surplus becomes
more non-separable, each group gets better outcomes.

More interestingly, Figures 4 and 5 show that our estimate of the supermodulaar
core D2Φ has very little bias, even when R2 becomes as large as 0.6. Recall that for
this value of R2, the non-separable term νij contributes half more variance than the
sum of the separable terms εiy and ηjx. This finding is important as we have known
since Becker (1973) that the supermodularity of the joint surplus drives the essential
properties of the matching. It points to a remarkable robustness of the Choo and
Siow (2006) estimator in the face of rather large deviations from separability.

Another important property of the matching equilibrium are its “equilibrium
prices”: how it shares the joint surplus between the two partners in any couple
that forms in equilibrium. Figures 6 and 7 show the distribution of the share that
goes to the man on average, that is

ux
ux � vy

for all types of couples (depending whether either partner is college-educated). We
focus on the symmetric case, where the shares should be close to 0.5 when the
partners are equally educated. Both figures confirm this; again, the lack of bias in
the estimated surplus shares is striking, even with R2 � 1 when the basic structure
of the Choo and Siow (2006) model vanishes.

With symmetric populations and supermodularity, one expects the couples in
which one partner is better-educated than the other to attribute a smaller share of
the surplus to the less-educated partner; and the difference should grow with the
supermodular core. Comparing Figures 6 and 7 shows that while men do almost as
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well with M � 1, F � 2 as with M � 2, F � 1 when the modularity is small, the
difference becomes more noticeable with large modularity.

Since solving the linear programming problem is much more expensive than using
the Iterative Proportional Fitting Procedure (IPFP) algorithm proposed by Galichon
and Salanié (2019), it is also interesting to compare their performances in our simu-
lation runs. While we already know that IPFP is much faster (and uses very little
memory), it is only rigorously valid in the “large market” limit when the number of
individuals goes to infinity. Figure 8 shows that even with our population size of
1,000, IPFP performs remarkably well: it yields equilibrium matching probabilities
µxy that are very close to the mode of the distribution of the Gurobi results for the
finite-population case.

We also ran a set of simulations with only 200 individuals. The results are basically
similar as with 1,000 individuals, with more variation across runs as expected.
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Figure 1: Estimates of Φ—small modularity
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Figure 2: Estimates of Φ—large modularity
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Figure 3: Estimates of ux and vy—symmetric, small modularity
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Figure 4: Estimates of D2Φ—small modularity
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Figure 5: Estimates of D2Φ—large modularity
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Figure 6: Estimates of Men’s Shares—symmetric, small modularity
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Figure 7: Estimates of Men’s Shares—symmetric, large modularity
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Figure 8: Estimates of µxy—symmetric, small modularity
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Concluding Remarks

Even with our set of 24 scenarii, we have only explored a small area of the parameter
space. Our conclusions are encouraging for separable models, however: even though
they rule out interactions between unobservable characteristics, the induced misspec-
ification biases do not seem to be severe. Estimating a separable, Choo and Siow
(2006) model on data that may have been generated by a non-separable model does
little apparent harm to our ability to get reliable estimates of the most economically
important statistics: the supermodular core and the surplus shares.
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Galichon, A., and B. Salanié (2017): “The Econometrics and Some Properties of
Separable Matching Models,”American Economic Review Papers and Proceedings,
107, 251–255.

20
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