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In matching with transferable utility, by definition the partners in a match
can exchange a good that has value for each partner. This still leaves room for
several subcases: the utility possibility frontier within a match may be nonlinear
(if for instance that good has diminishing marginal utility); transfers may be
constrained; and the transfer may occasion frictions or other costs. We focus
in this chapter on the simplest case, in which there is a good that has constant
marginal utility, and the value of this marginal utility is the same for all agents.
This defines perfectly transferable utility.

For simplicity, we also limit our discussion to the one-to-one bipartite model:
each match consists of two partners, drawn from two separate subpopulations.
The paradigmatic example is the heterosexual marriage market, in which the two
subpopulations are men and women. We will use these terms for concreteness.

We assume that the econometrician observes a discrete set of characteristics
of men and women: their education, their age, their income category etc. Each
combination of the values of these characteristics defines a type. Section 1.1
introduces the main tools of this chapter when types contain all payoff-relevant
information. In any real-world application, men and women of a given type will
also vary in their preferences and more generally in their ability to create joint
surplus in any match. We add this unobserved heterogeneity in Section 2.

Matching with transferable utility solves a linear programming problem. In
recent years it has been analyzed with the methods of optimal transportation.
Under an additional “separability” assumption, most functions of interest are
convex; then convex duality gives a simple and transparent path to identification
of the parameters of these models1. The empirical implementation is especially
straightforward when the unobserved heterogeneity has a multinomial logit form
and the joint surplus is linear in the parameters. Then the parameters can be
estimated by minimizing a globally convex objective function. This is the ap-
proach presented in Galichon and Salanié (2020), on which much of this chapter
is based.

1We collected the elements of convex analysis used in this chapter in an Appendix.
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1 Matching without unobserved heterogeneity
1.1 Population and preferences
For the sake of exposition, we start by excluding any unobserved heterogeneity.
The data of the problem is as follows. We are given sets of types X for men,
and Y for women. There are nx men of type x and my women of type y. The
set of marital options that are offered to men and women is the set of types
of partners on the other side of the market, plus singlehood. We introduce the
notation 0 for singlehood and we define X0 = X ∪ {0} and Y0 = Y ∪ {0} as the
set of marital options that are available to respectively women and men.

We denote by µxy the number of matches between men of type x and women
of type y, which is determined at equilibrium. All men of type x, and all women
of type y, must be single or matched. This generates the scarcity constraints:

Nx(µ) :=
∑
y∈Y

µxy + µx0 = nx ∀x ∈ X

My(µ) :=
∑
x∈X

µxy + µ0y = my ∀y ∈ Y.

If a man of type x and a woman of type y match, the assumption of perfectly
transferable utility implies that their respective utilities can be written as

αxy + txy

γxy − txy

where txy is the transfer from y to x. We assume that if an individual remains
single, (s)he obtains utility zero—a harmless normalization. We assume that
each individual knows the equilibrium values of the transfers for all matches
that (s)he may take part in2.

Notations. We will denote the vector of transfers by t = (txy) and matching
patterns by µ = (µxy). For any doubly-indexed variable zxy, we use the notation
zx· to denote the vector of values of zxy; and we use a similar notation for z·y.

1.2 Marital demand
Consider a man of type x. He faces a simple discrete choice problem, which
consists of choosing the marital option y ∈ Y0 that maximizes his payoff αxy +
txy. Denoting Gx (αx· + tx·) the value of this program, we get

Gx (αx· + tx·) := max
y∈Y0

(αxy + txy). (1)

We formulate this problem as a linear programming problem by introducing the
conditional probability µM

y|x that a man of type x matches with a woman of type
y (for single men, y = 0.) Note that given that there are nx men of type x, the
total number of such matches will be µM

xy := nxµ
M
y|x.

2We also adopt the notational convention αx0 = γ0y = tx0 = t0y = 0.
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For each x ∈ X , the vector µM
·|x must solve the linear program

Gx (αx· + tx·) = max
µ·|x≥0

∑
y∈Y

µy|x (αxy + txy) :
∑
y∈Y

µy|x + µ0|x = 1. (2)

As the maximum of a family of linear functions of its arguments over a convex
domain, Gx is a convex function. Moreover, since (2) is a linear program, it has a
dual whose value is also Gx(αx·+tx·). Denote ux the multiplier of the adding-up
constraint in the primal program (2). Then ux solves the dual program

Gx (αx· + tx·) = min
ux≥0

ux : ux ≥ αxy + txy ∀y ∈ Y (3)

While this program is trivial here, it will become more interesting when we
introduce unobserved heterogeneity. Note that both (2) and (3) incorporate
our normalization that singles get zero utility.

Proceeding similarly with women, we have the equivalent formulations

Hy

(
γ·y − t·y

)
:= max

x∈X
(γxy − txy) (4)

= max
µ·|y≥0

∑
x∈X

µx|y
(
γxy − txy

)
:
∑
x∈X

µy|x + µ0|y = 1 (5)

= min
vy≥0

vy : vy ≥ γxy − txy ∀x ∈ X . (6)

with solutions µW
·|y and vy. Now since Gx and Hy are convex functions, they have

subgradients ∂Gx and ∂Hy; and by the envelope theorem, µM
·|x ∈ ∂Gx (αx· + tx·)

and µW
·|y ∈ ∂Hy

(
γ·y − t·y

)
. Introduce G and H as the sum of the value functions

of men and women, respectively, that is

G(α+ t) :=
∑
x∈X

nxGx(αx· + tx·) and H (γ − t) :=
∑
y∈Y

myHy(γ·y − t·y), (7)

we have, recalling that µM
xy = nxµ

M
y|x and defining µW

xy := myµ
W
x|y that

µM ∈ ∂G (α+ t) and µW ∈ ∂H (γ − t) .

1.3 Equilibrium
In equilibrium, the nx men of type x seek to match with µM

xy = nxµ
M
y|x women

of type y, while the my women of type y seek µW
xy = myµ

W
x|y men of type x.

Therefore the transfers t must take values such that

µM
xy = µW

xy = µxy (8)
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for all pairs of types (x, y). Let us now sum the welfare of all participants in
the market to compute the total joint surplus3:

W(t) := G(α+t)+H(γ−t) =
∑
x∈X

nx max
y∈Y

{αxy + txy, 0}+
∑
y∈Y

my max
x∈X

{
γxy − txy, 0

}
(9)

which has a linear programming formulation as the sum of the dual problems (3)
and (6) above

W (t) = min
ux≥0
vy≥0

∑
x∈X

nxux +
∑
y∈Y

myvy


s.t. ux ≥ αxy + txy ∀y

vy ≥ γxy − txy ∀x.

The function W (t) is obviously convex in t, with a subdifferential ∂G− ∂H
wich is the set of vectors

(
µM
xy − µW

xy

)
xy

, where µM ∈ ∂G (α+ t) and µW ∈
∂H (γ − t). Hence, in view of relation (8), at equilibrium the vector 0 = µM −
µW should be in the subdifferential of W. Therefore the equilibrium transfers
t = (txy) must minimize W(t), and solve

min
(txy)

W(t) = min
ux≥0
vy≥0

∑
x∈X

nxux +
∑
y∈Y

myvy

 (10)

s.t. ux + vy ≥ Φxy

where the matrix Φ ≡ αxy + γxy is the joint surplus of a match between types
x and y. As this formulation makes clear, the solutions ux and vy only depend
on Φ and on the margins n and m. Once ux and vy are known, the transfers
txy can be reconstructed as any solution to the set of inequalities

γxy − vy ≤ txy ≤ ux − αxy ∀(x, y).

By duality, the problem above can be interpreted as dual to the optimal
assignment problem, and we have

min
(txy)

W(t) = max
µ≥0

∑
x∈X
yinY

µxy(αxy + γxy)

s.t.
∑
y∈Y

µxy ≤ nx ∀x ∈ X and
∑
x∈X

µxy ≤ my ∀y ∈ Y.

which provides the equilibirum matching
(
µxy

)
in (8).

3Note that W also depends on α, γ, n, and m. We deleted them from the notation for
readability.
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1.4 Identification
Now suppose that the analyst observes the margin vectors (nx) and (my) and the
equilibrium matching patterns (µxy). Let us denote G∗ the Legendre-Fenchel
transform of the convex function G:

G∗(µ) = sup
a∈RY×Y

∑
x∈X
y∈Y

µxyaxy −G(a)

 .

It is another convex function; and by the theory of convex duality we know that
since

µM ∈ ∂G(α+ t),

we also have
α+ t ∈ ∂G∗(µM ). (11)

Since the function G is easy to compute, so is the function G∗. Observing
the matching patterns and the margin vectors therefore identifies all values of
(αxy + txy) and (γxy − txy). By simple addition, it gives all values Φxy of the
joint surplus. If the analyst observes the transfers, it also identifies α and γ.

2 Matching with Unobserved Heterogeneity
A proper econometric setting requires that we allow for unobserved heterogene-
ity, and that we spell out our assumptions on its distribution. Most crucially,
the analyst cannot observe all the determinants of the joint surplus Φ̃mw gen-
erated by a hypothetical match between a man m and a woman w. A priori,
it could depend on interactions between types, between types and unobserved
characteristics, and between the unobserved characteristics of both partners.

2.1 Separability
Much of the literature has settled on excluding interactions between unobserved
characteristics, and this is the path we take here. We impose:
Assumption 1 (Separability). The joint surplus generated by a match between
man m with type x and woman w with type y is

Φ̃mw = Φxy + εmy + ηwx. (12)

The utility of man m and woman w if unmatched are εm0 and ηw0 respectively.
In the language of analysis of variance models, the separability assumption

rules out two-way interactions between unobserved characteristics, conditional
on observed types. While this is restrictive, it still allows for rich patterns
of matching in equilibrium. For instance, all women may like educated men,
but those women who value education more are more likely (everything equal)
to marry a more educated man, provided that they in turn have observed or
unobserved characteristics that more educated men value more.
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2.2 Equilibrium
We continue to assume that the econometrician only has data on the numbers
of potential partners of each type (the margins n and m) and on “who matches
with whom”: the number of matches µxy between men of type x and women of
type w. Convex duality will remain the key to our approach to identification.
First, separability will allow us to extend the definitions of Gx and G∗

x. We
start by rewriting the dual characterization of equilibrium in (10) as

min
um≥εm0
vw≥ηw0

(∑
m

um +
∑
w

vw

)
(13)

s.t. um + vw ≥ Φ̃mw ∀m,w.

Given Assumption 1, the constraint in (13) can be rewritten as

(um − εmy) + (vw − ηwx) ≥ Φxmyw ∀m,w. (14)

Now define Uxy = minm:xm=x {um − εmy} and Vxy = minw:yw=y {vw − ηwx}.
The constraint becomes

Uxy + Vxy ≥ Φxy ∀x, y.

Moreover, by definition4 um = maxy∈Y0
(Uxmy+εmy) and vw = maxx∈X0

(Vxyw
+

ηwx), so that we can rewrite the dual program as

min
U,V

(∑
m

max
y∈Y0

(Uxmy + εmy) +
∑
w

max
x∈X0

(Vxyw + ηwx)

)
s.t. Uxy + Vxy ≥ Φxy ∀x, y.

The Lagrange multiplier associated with the constraint Uxy + Vxy ≥ Φxy is
µxy ≥ 0, the number of matches between types x and y. Often no “matching
cell” is empty in the data, so that µxy > 0 for all (x, y). Then we can replace
Vxy with (Φxy − Uxy) to obtain a simple unconstrained program:

min
U

(∑
m

max
y∈Y0

(Uxmy + εmy) +
∑
w

max
x∈X0

(Φxyw
− Uxyw

+ ηwx)

)
.

We just reduced the dimensionality of the problem from the number of indi-
viduals in the market to the product of the numbers of their observed types.
Since the latter is typically orders of magnitude smaller than the former, this is
a drastic simplification. Assumption 1 was the key ingredient: without it, we
would have a term ξmw interacting the unobservables in the joint surplus Φ̃mw

and (14) would lose its nice separable structure.
4Setting Ux0 = V0y = 0.
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2.3 Identification
Let us now assume that we observe a market characterized by a matrix (Φxy)
and distributions of the unobserved terms ε and η. For any man m of type x,
the random vector εm = (εmy)y∈Y0

is distributed according to Px. Similarly,
for any woman w of type y, the random vector ηw = (ηwx)x∈X0

is distributed
according to Qy. This allows us to define the convex functions Gx and G in a
way that naturally extends expressions (3) and (7) by

Gx(Ux·) := EPx
max
y∈Y0

(Uxy + εmy) and G (U) =
∑
x∈X

nxGx(Ux·)

Suppose that the market is large, so that averages can be approximated by
expectations. Defining Hy(V·y) and H (V ) as with Gx(Ux·) and G (U), we see
that the equilibrium U minimizes G(U) + H(V ) subject to constraints Uxy +
Vxy = Φxy. Now recall that µxy was the multiplier of the latter constraint.
Simple algebra shows that

µxy =
∂G

∂Uxy
(U) =

∂H

∂Vxy
(V ) .

Taking Legendre–Fenchel transforms as in (11) gives

Uxy =
∂G∗

∂µxy

(µ)

Vxy =
∂H∗

∂µxy

(µ) .

Since U and V must add to Φ, we obtain a system of |X | × |Y| equations

Φxy =
∂G∗

∂µxy

(µ) +
∂H∗

∂µxy

(µ) . (15)

This identifies the Φ matrix in the joint surplus as a function of the observed
matching patterns (µxy) and the shape of the functions G∗ and H∗. The latter
in turn depend on the distributions Px and Qy.

2.4 The Total Joint Surplus
Just as in Section (1.1), the equilibrium matching maximizes the total joint
surplus. The corresponding primal program is

W(Φ, n,m) = max
µ≥0

∑
x∈X
y∈Y

µxyΦxy − E (µ;n,m)

 (16)

where
E (µ;n,m) = G∗ (µ;n) +H∗ (µ;m)
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is the generalized entropy of the matching µ. In this formula, G∗ and H∗ are the
Legendre-Fenchel transforms of G and H. It is easy to check that the first-order
conditions in (16) (which is globally concave) coincide with the identification
formula (15).

The two parts of the objective function in (16) have a natural interpretation.
The sum

∑
x,y µxyΦxy reflects the value of matching on observed types only. The

generalized entropy term −E(µ;n,m) is the sum of the values that are generated
by matching unobserved heterogeneities with observed types: e.g. men of type
x with a high value of εmy being more likely to match with women of type y.

2.5 Extending the Generalized Entropy
We skipped over an important technical issue: the Legendre-Fenchel transform
of Gx is equal to +∞ unless

∑
y∈Y µxy = Nx(µ) − µx0 ≤ nx. Therefore the

objective function in (16) is minus infinity when any of these scarcity constraints
is violated.

There are two approaches to making the problem well-behaved. We can
simply add the constraints to the program. As it turns out, extending the
generalized entropy beyond its domain is sometimes a much better approach.
To do this, we replace nx with Nx(µ) in the definition of the generalized entropy,
and we add terms that make the function finite for all µ while preserving its
convexity:

E (µ) = E (µ;N(µ),M(µ)) + f (N(µ)) + g (M(µ))

where f and g are strictly convex functions of (respectively) the vectors N(µ) =
(Nx(µ))x∈X and M(µ) = (My(µ))y∈Y , which are themselves linear functions of
µ.

Any pair of functions f and g that satisfies these conditions will make the
function E well-defined and strictly convex over all of R|X | |Y|; as we will see
in Section 2.7, clever choices may lead to a further drastic simplification in the
estimation procedure.

Armed with the extended generalized entropy E, we can replace E(µ;n,m)
with E(µ)− f(n)− g(m) and rewrite (16) as

W (Φ;n,m) = max
µ≥0

∑
x∈X
y∈Y

µxyΦxy − E (µ) + f (n) + g (m)


s.t. N(µ) = n

M(µ) = m.

As a convex program, it has a dual formulation that can be written in terms of
the Legendre-Fenchel transform E∗ of E:

E∗ ((zxy), (zx0), (z0y)) = max
µ≥0

∑
x∈X
y∈Y

zxyµxy +
∑
x∈X

zx0µx0 +
∑
y∈Y

z0yµ0y − E(µ)

 .
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Letting (ux) and (vy) denote the multipliers of the scarcity constraints and
Φ− u− v = (Φxy − ux − vy)x,y, simple calculations show that the dual is:

W (Φ;n,m) = min
u,v≥0

(⟨n, u⟩+ ⟨m, v⟩+ E∗ (Φ− u− v,−u,−v)) + f(n) + g(m)

Taking first-order conditions in this C1, strictly convex program gives{
nx = ∂E∗

∂zxy
+ ∂E∗

∂zx0

my = ∂E∗

∂zxy
+ ∂E∗

∂z0y

. (17)

Now by the envelope theorem,
µxy = ∂E∗

∂zxy
(Φ− u− v,−u,−v)

µx0 = ∂E∗

∂zx0
(Φ− u− v,−u− v)

µ0y = ∂E∗

∂z0y
(Φ− u− v,−u,−v)

(18)

so that the conditions in (17) are simply N(µ) = n and M(µ) = m.
These systems of equations will serve as the basis for a computationally

attractive estimation procedure in Section 2.7.

2.6 The Multinomial Logit Model
Following a long tradition in discrete choice models, much of the literature has
focused on the case when the distributions Px and Qy are standard type I ex-
treme value (Gumbel). Under this distributional assumption, the Gx functions
take a very simple and familiar form:

Gx(Ux·) =
exp(Uxy)

1 +
∑

t∈Y exp(Uxt)
;

and the generalized entropy function E is just the usual entropy:

E (µ;n,m) = 2
∑
x∈X
y∈Y

µxy logµxy +
∑
x∈X

µx0 logµx0 +
∑
y∈Y

µ0y logµ0y. (19)

Equation (15) can be rewritten to yield the following matching function, which
links the numbers of singles, the joint surplus, and the numbers of matches:

µxy =
√
µx0µ0y exp

(
Φxy

2

)
. (20)

To construct the extended entropy function E, we rely on the primitive of the
logarithm:

f(N) =
∑
x∈X

(Nx logNx −Nx) and g(M) =
∑
y∈Y

(Mx logMy −My).
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The reason for this a priori non-obvious choice of strictly convex functions is
that many of the terms in the derivatives of the resulting extended entropy will
cancel out. In fact, simple calculations give

E∗ (z) = 2
∑
x∈X
y∈Y

exp
(zxy

2

)
+
∑
x∈X

exp (zx0) +
∑
y∈Y

exp (z0y) . (21)

The equations in (18) become
µxy = exp

(
Φxy−ux−vy

2

)
µx0 = exp (−ux)
µ0y = exp (−vy)

(22)

In the multinomial logit model, the distributions Px and Qy have no free
parameter: the only unknown parameters in the model are those that determine
the joint surplus matrix Φ. Using (20) (or eliminating u and v from (22)) gives
Choo and Siow’s formula:

Φxy = log
µ2
xy

µx0µ0y

(23)

Plugging in estimates µ̂ of the matching patterns in this formula gives a closed-
form estimator Φ̂ of the joint surplus matrix. On the other hand, determining
the equilibrium matching patterns µ for given primitive parameters Φ, n,m is
more involved; and it is necessary in order to evaluate counterfactuals that
modify these primitives of the model. We will show how to do it in Section 3.2
below. In addition, the econometrician may want to assume that the joint
surplus matrix Φ belongs in a parametric family Φλ. While this could be done
by finding the value of λ that minimize the distance between Φλ and the Φ̂
obtained from (23), there are better ways as we will now see.

2.7 Parametric estimation
Let us return to the general (separable) model. Assume that the analyst ob-
serves the numbers of individuals in each type n̂, m̂ and of the numbers of
matches in each pair of types µ̂. Depending on the context, the econometrician
may choose to allocate more parameters to the matrix Φ or to the distributions
Px and Qy. Let λ parameterize the joint surplus Φ, and β the distributions.

A natural choice of parameterization for Φλ
xy is the linear expansion

Φλ
xy =

K∑
k=1

λkϕ
k
xy

where the basis functions ϕk
xy are given and the λk coefficients are to be es-

timated. The generalized entropy is a function of the unknown parameters β
via the distributions Px and Qy. Given any choice of strictly convex functions
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f and g, the construction in Section 2.5 gives an extended entropy function E
that also depends on β.

Given these modelling choices, we define the following function:

F (u, v, λ;β) ≡ ⟨n̂, u⟩+ ⟨m̂, v⟩ −
∑
xy

µ̂xyΦ
λ
xy + E∗

β

(
Φλ − u− v,−u,−v

)
. (24)

Note that since Φλ is linear in λ and the extended entropy is strictly convex, F
is strictly convex in (u, v, λ) for any β. Its derivatives are

∂F
∂ux

= nx −
∑

y∈Y
∂E∗

β

∂zxy
− ∂E∗

β

∂zx0

∂F
∂vy

= my −
∑

x∈X
∂E∗

β

∂zxy
− ∂E∗

β

∂z0y

∂F
∂λk

=
∑

x∈X
y∈Y

(
∂E∗

β

∂zxy
− µ̂xy

)
ϕk
xy

From the system (18) we know that the derivatives of E∗
β above are just the

matching patterns µ(u, v, λ;β) implied by u and v when the joint surplus matrix
is Φλ and the distributions Px and Qy correspond to the parameter value β. As
a consequence, the derivatives of F can be written as

∂F

∂ux
= nx −Nx(µ(u, v, λ;β)) (25)

∂F

∂vy
= my −My(µ(u, v, λ;β)) (26)

∂F

∂λk
=
∑
x∈X
y∈Y

µxy(u, v, λ;β)ϕ
k
xy −

∑
x∈X
y∈Y

µ̂xyϕ
k
xy. (27)

For fixed β, minimizing F over (u, v, λ) ensures that the predicted matching
has the same margins n̂ and m̂ as the observed matching µ̂; and that the pre-
dicted expectations of the basis functions ϕk coincide with their expectations in
the data. Since F is strictly convex in in all of its (|X | + |Y| +K) arguments
(u, v, λ), minimizing it is a simple task. In addition to estimating the parame-
ters of the joint surplus, it directly yields estimates of the expected utilities of
each type.

For the multinomial logit model of Section 2.6, there are no β parameters
and the function F becomes

F (u, v, λ) = 2
∑
x∈X
y∈Y

exp

(
Φλ

xy − ux − vy

2

)
+
∑
x∈X

exp (−ux) +
∑
y∈Y

exp (−vy)

−
∑
x∈X
y∈Y

µ̂xy

(
Φλ

xy − ux − vy
)
+
∑
x∈X

µ̂x0ux +
∑
xx∈Y

µ̂0yvy. (28)
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In less constrained models, the parameters β of the distributions Px and Qy

must also be estimated. This can be done by minimizing the distance between
the observed matching patterns µ̂ and the µβ that result from plugging the
minimizers of F (·, ·, ·;β) into (18).

3 Computation
In many models (and certainly in the multinomial logit model with a linear joint
surplus), minimizing the function F is the most appealing way to estimate the
parameters. In all of this section, we assume that the joint surplus is indeed
linear in the parameters λ; we consider any distributional parameter β as fixed
and we omit it from the notation.

3.1 Gradient descent
The simplest approach to minimizing F is through gradient descent. Denoting
θ = (u, v, λ), we start from a reasonable θ(0) and we iterate:

θ(t+1) = θ(t) − ϵ(t)∇F
(
θ(t)
)

where ϵ(t) > 0 is a small enough parameter. Given (25)–(27), we get

u(t+1)
x = u(t)

x + ϵ(t)
(
nx −Nx(µ

(t))
)

v(t+1)
y = v(t)y + ϵ(t)

(
my −My(µ

(t))
)

λ
(t+1)
k = λ

(t)
k + ϵ(t)

∑
x∈X
y∈Y

(
µ(t)
xy − µ̂xy

)
ϕk
xy,

denoting µ(t) the result of plugging (u(t), v(t), λ(t)) into (18).
This algorithm has a simple intuition: we adjust ux in proportion of the

excess of x types, vy in proportion of the excess of y types, and λ in proportion
of the mismatch between the k-th moment predicted by θ and the observed k-th
moment.

In the multinomial logit model, u(0)
x = − log(µ̂x0/n̂x) and v

(0)
y = − log(µ̂0y/m̂y)

are excellent choices of initial values.

3.2 Coordinate descent
An even faster way to proceed is sometimes available. Fixing λ, let us us solve
for the equilibrium matching:

min
u,v
λ≥0

F (u, v, λ) . (29)
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Coordinate descent consists of minimizing F iteratively with respect to its two
argument vectors: with respect to u keeping v fixed, then with respect to v
keeping u fixed at its new value, etc.

Let v(t) be the current value of v. Minimizing F with respect to u for
v = v(t) yields a set of |X | equations in |X | unknowns: u

(t+1)
x is the value of ux

that solves

n̂x =
∑
y∈Y

∂E∗

∂zxy

(
Φλ − u− v(t),−u,−v(t)

)
+

∂E∗

∂zx0

(
Φλ − u− v(t),−u,−v(t)

)
.

These equations can in turned be solved coordinate by coordinate: we start
with x = 1 and solve the x = 1 equation for u

(t+1)
1 fixing (u2, . . . , u|X |) =

(u
(t)
2 , . . . , u

(t)
|X |); then we solve the x = 2 equation for u(t+1)

2 fixing (u1, u3, . . . , u|X |) =

(u
(t+1)
1 , u

(t)
3 . . . , u

(t)
|X |), etc. The convexity of the function E∗ implies that the

right-hand side of each equation is strictly decreasing in its scalar unknown,
which makes it easy to solve.

The multinomial logit model constitutes an important special case in which
these equations can be solved with elementary calculations, for any joint surplus
matrix Φ. Define Sxy := exp(Φxy/2); ax := exp (−ux); and by := exp (−vy). It
is easy to see that the system of equations that determines u(t+1) becomes

a2x + ax
∑
y∈Y

b(t)y Sxy = nx ∀x ∈ X .

These are |X | functionally independent quadratic equations, which can be solved
in closed-form and in parallel. Once this is done, a similar system of indepen-
dent quadratic equations gives b(t+1) from a(t+1). This procedure, introduced
in Galichon and Salanié (2020), generalizes the Iterative Proportional Fitting
Procedure (IPFP), also known as Sinkhorn’s algorithm. It converges globally
and very fast. Once the solutions (ax) and (by) are obtained, the equilibrium
matching patterns for this Φ are given by µx0 = a2x, µ0y = b2y and µxy = axbySxy.
For initial values, a(0)x =

√
µ̂x0 and b

(0)
y =

√
µ̂0y are obviously good choices.

3.3 Hybrid Algorithms
In order to minimize the function F , one can also alternate between coordinate
descent steps on u and v and gradient descent steps on λ, as suggested by Carlier
et al. (2020). In the multinomial logit model, this would combine the updates

(
a
(t+1)
x

)2
+ a

(t+1)
x

∑
y∈Y b

(t)
y S

(t)
xy = nx(

b
(t+1)
y

)2
+ b

(t+1)
y

∑
x∈X a

(t+1)
y S

(t)
xy = my

λ
(t+1)
k = λ

(t)
k + ϵ(t)

∑
x∈X
y∈Y

(
a
(t+1)
x b

(t+1)
y S

(t)
xy − µ̂xy

)
ϕk
xy
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where S
(t)
xy = exp(

∑K
k=1 ϕ

k
xyλ

(t)
k /2).

A proof of convergence of hybrid algorithms is given in Carlier et al. (2020), in
a more general setting that allows for model selection based on penalty functions.

4 Inference
4.1 The Sampling Level
In matching markets, the sample may be drawn from the population at the
individual level or at the match level. Take the marriage market as an example.
With individual sampling, each man or woman in the population would be a
sampling unit. In fact, household-based sampling is more common in population
surveys: when a household is sampled, data is collected on all of its members.
Some of these households consist of a single man or woman, and others consist
of a married couple. We assume here that sampling is at the household level.

4.2 The Asymptotic Distribution of the Estimator
Recall that µ̂xy, µ̂x0 and µ̂0y are the number of matches of type xy, x0 and 0y,
respectively in our sample. Denote

Nh =
∑
x∈X

µ̂x0 +
∑
y∈Y

µ̂0y +
∑
x∈X
y∈Y

µ̂xy

the number of households in our sample, and let

π̂xy =
µ̂xy

Nh
, π̂x0 =

µ̂x0

Nh
and π̂0y =

µ̂0y

Nh

the empirical sample frequencies of matches of type xy, x0 and 0y, respectively.
Let π be the population analogs of π̂. In the multinomial logit case, recall that
our preferred method estimates θ = (λ, u, v) by

min
θ

F (θ, π̂)

where

F (θ, π̂) =
∑
x∈X

exp (−ux) +
∑
y∈Y

exp (−vy) + 2
∑
x∈X
y∈Y

exp

(
Φλ

xy − ux − vy

2

)

−
∑
x∈X
y∈Y

π̂xy

(
Φλ

xy − ux − vy
)
+
∑
x∈X

π̂x0ux +
∑
y∈Y

π̂0yvy.

The estimators of the matching probabilities have an asymptotic distribution

π̂h ∼ N
(
0,

Vπ

Nh

)
where Vπ = diag (π)− ππ⊤.
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where h ∈ X × Y ∪ X × {0} ∪ {0} × Y. Totally differentiating the first order
conditions Fθ(θ̂, π̂) = 0 gives

θ ∼ N
(
0,

Vθ

Nh

)
where

Vθ = (Fθθ)
−1

FθπVπF
⊤
θπ (Fθθ)

−1

and the Fab represent the blocks of the Hessian of F at (θ̂, π̂). Easy calculations
show that Fθθ in turn decomposes into

Fuu = ... Fuv =

(
πλ
xy

2

)
xy

Fuλ = − 1
2

(∑
y π

λ
xyϕ

k
xy

)
xk

. Fvv = ... Fvλ = − 1
2

(∑
x π

λ
xyϕ

k
xy

)
yk

. . Fλλ = 1
2

(∑λ
x,y π̂xyϕ

k
xyϕ

l
xy

)
kl


where

Fuu = diag

(1

2

∑
y

πλ
xy + πλ

x0

)
x

 and Fvv = diag

(1

2

∑
x

πλ
xy + πλ

0y

)
y


and

Fθπ =


(
1⊤Y ⊗ IX

)
IX 0(

IY ⊗ 1⊤X
)

0 IY(
−ϕk

xy

)
k,xy

0 0

 .

5 Other Implementation Issues
Let us now very briefly discuss three issues that often crop up in applications.

5.1 Continuous Types
While we modeled types as discrete-valued in this chapter, there are applications
where this is not appropriate. Dupuy and Galichon (2014) showed how to
incorporate continuous types in a separable model. The idea, following Dagsvik
(2000), is to model the choice of possible partners as generated by the points of
a specific Poisson process. This generates a matching function that is similar
to the multinomial logit model of Section 2.6. One can also mix discrete- and
continuous-valued types, as in Guadalupe et al. (2020). Dupuy and Galichon
(2014) show that when the surplus function is bilinear on Rdx ×Rdy : Φ(x, y) =
x⊤Ay, then π solves

max
π∈M(P,Q)

Eπ

[
X⊤AY

]
− Eπ [lnπ (X,Y )] .
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The maximization is over M (P,Q), the set of joint distributions of (X,Y ) such
that X has distribution P and Y has distribution Q. At the optimum, for every
x ∈ Rdx for every y ∈ Rdx and for every k and l such that 1 ≤ k ≤ dx and
1 ≤ l ≤ dy, one has

∂2 lnπ (x, y)

∂xk∂yl
= Akl.

In particular, when P and Q are Gaussian distributions, Bojilov and Gali-
chon (2016) show that the optimal matching (X,Y ) is a Gaussian vector whose
distribution can be obtained in closed form. Suppose for instance that dx = dy =
1; P = N

(
0, σ2

x

)
; Q = N

(
0, σ2

y

)
; and Φ(x, y) = axy, Then at the optimum

V X = σ2
x, V Y = σ2

y, and corr (X,Y ) = ρ where ρ is related to a by

aσxσy =
ρ

1− ρ2
.

5.2 Using Several Markets
We have focused on the case when the analyst has data on one market. If data
on several markets is available; matches do not cross market boundaries; and
some of the primitives of the model coincide across markets, then this can be
used to relax the conditions necessary for identification.

As an example, Chiappori et al. (2017) pooled Census data on thirty cohorts
in the US in order to study the changes in the marriage returns to education.
To do this, they assumed that the supermodularity module of the function Φ
changed at a constant rate over the period.

Fox et al. (2018) show how given enough markets, one can identify the dis-
tribution of the unobserved heterogeneity if it is constant across markets.

5.3 Using Additional Data
In applications to the labor market for instance, the analyst often has some
information on transfers—wages in this case. This information can be used
in estimating the underlying matching model. It is especially useful if it is
available at the level of each individual match. Aggregate data on transfers has
more limited value (Salanié, 2015).

6 Semiparametric Approaches
This chapter has emphasized maximum-likelihood estimation and moment-matching
in separable models. Let us now describe two alternative approaches that do
not require that the analyst fully specify the distribution of unobserved hetero-
geneity.
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6.1 Exploiting Monotonicity
In most one-sided random utility models of discrete choice, the probability that
a given alternative is chosen increases with its mean utility. Manski (1975)
used this monotonicity property to construct a maximum score estimator of the
parameters of such discrete choice models. Assume that alternative j has utility
U(xij , θ0) + uij for individual i. Let J(i) be the choice of individual i and for
any given θ, denote

Ri(θ) ≡
∑

j ̸=J(i)

11
(
U(xi,J(i), θ) > U(xij , θ)

)
the rank (from the bottom) of the chosen alternative J(i) among the mean
utilities. Choose any increasing function F . If (for simplicity) the uij are iid
across i and j, maximizing the score function∑

i

F (Ri(θ))

over θ yields a consistent estimator of θ0. The underlying intuition is simply
that the probability that j is chosen is an increasing function of the differences
of mean utilities U(xij , θ)− U(xik, θ) for all k ̸= j.

It seems natural to ask whether a similar property also holds in two-sided
matching with transferable utility: is there a sense in which (under appropriate
assumptions) the probability of a match increases with the surplus it generates?
This line of research was started by Fox (2010).

If transfers are observed, then each individual’s choices is just a one-sided
choice model and Manski (1975)’s result can be used essentially as is. Without
data on transfers, the answer is not straightforward. In a two-sided model,
the very choice of a single ranking is not self-evident. In so far as the optimal
matching is partly driven by unobservables, it is generally not true that the
optimal matching maximizes the joint total non-stochastic surplus for instance.

One can give a positive answer in one of the models we have already dis-
cussed: the multinomial logit specification of Choo and Siow (2006). The for-
mula

µ(x, y)2

µ(x, ∅)µ(∅, y)
= exp (Φ(x, y))

implies that for any (x, x′, y, y′), the double log-odds ratio

2 log
µ(x, y)µ(x′, y′)

µ(x, y′)µ(x′, y)

equals the double difference

DΦ(x, x
′, y, y′) ≡ Φ(x, y) + Φ(x′, y′)− Φ(x′, y)− Φ(x, y′).

This direct link between the observed matching patterns and the unknown
surplus function justifies a maximum-score estimator

max
Φ

∑
(x,x′,y,y′)∈C

11 (DΦ(x, x
′, y, y′) > 0)
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where C is a subset of the pairs that can be formed from the data. Bajari and
Fox (2013) used this estimator to study the FCC spectrum auctions.

More generally, Graham (2011, 2014) proved that if the surplus is separable
and the distribution of the unobservable heterogeneity vectors is independently
and identically distributed, then the log-odds ratio and the double difference
DΦ(x, x

′, y, y′) defined above have the same sign. While this is clearly a weaker
result than in the multinomial logit model, it is enough to apply the same
maximum-score estimator.

Fox (2018) extended Graham’s result to exchangeable distributions on a
many-to-many matching market. He applied the maximum score estimator to
data on trades of car parts between suppliers and assemblers. His application
shows one of the main advantages of the maximum-score method: it is easier
to extend to more complex matching markets5. It also allows the analyst to
select the tuples of trades in C to emphasize those that are more relevant in a
given application. The price to pay is double. First, the maximum-score esti-
mator maximizes a discontinuous function and has slow asymptotics6. Second,
the underlying monotonicity property only holds for distributions of unobserved
heterogeneity that exclude nested logit models and random coefficients for in-
stance.

6.2 Dimension Reduction
As we have seen, the joint surplus function is a very high-dimensional object: it is
a function of the observable characteristics of both partners and of the stochastic
terms. In the original Becker (1973) model of the marriage market, the joint
surplus had no stochastic element; and it only depended on one quantitative
trait of the two partners:

Φmw = Φ(xm, xw)

for some scalar trait x. Slightly more generally, one could have Φmw = Φ(Im, Jw)
with indices Im = I(xm) and Jw = J(xw). Just as in Becker (1973), if Φ is
supermodular then the optimal matching is positive assortative: men with a
higher Im match with women with a higher Jw.

Chiappori et al. (2012) build on this idea to propose a model that reduces the
dimensionality of the parameter space when the observable characteristics xm

and yw have continuous distributions. For empirical work we need to take into
account unobserved heterogeneity, and to restrict its variations. First, we will
assume a form of nonlinear separability: all unobserved heterogeneity reduces
to an εm that only depends on the man, by an ηw that only depends on the
woman. Second, we will restrict how the distribution of εm (resp. ηw) depends
on the observed characteristics xm (resp yw).

More precisely, we assume that there exist two vectors of indices Im = I(xm)
and Jw = J(xw) such that

Φmw = Φ(Im, Jw, εm, ηw).

5As always, in the absence of large complementarities.
6The maximum-score estimator converges at a cubic-root rate.
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Moreover, we assume that εm is independent if xm conditional on Im, and that
ηw is independent if yw conditional on Jw; and that Φ is increasing in εm and
in ηw.

For simplicity, we now assume that the indices are one-dimensional. The
function I can be interpreted as an “attractiveness index” by which all women
agree to rank men. Women may differ in the intensity of their preference for
more “attractive” men; but they all agree—this is the crucial ingredient—in how
they aggregate the various observable characteristics xm into a one-dimensional
index. The conditional independence property imposed on εm ensures that this
reduction of the dimension of the problem survives the introduction of stochastic
terms.

Under these conditions, Chiappori et al. (2012) show that at any optimal
matching, all men with the same value of the index Im are matched with women
who share the same value of Jw. More precisely, the probability density function
of the matches in (xm, yw) space is a function of I(xm) and J(yw):

µ(xm, yw) ≡ ζ (I(xm), J(yw))

for some function ζ defined on R2.
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7 Appendix: reminders on convex analysis
This brief appendix on convex analysis, contains only the bare minimum needed
for this chapter. For an economic interpretation in terms of matching, see Gali-
chon (2016), chapter 6.

In what follows, we consider a convex function φ : Rn → R∪{+∞} which is
not identically +∞. If φ is differentiable at x, we denote its gradient at x as the
vector of partial derivatives, that is ∇φ (x) = (∂φ (x) /∂x1, . . . , ∂φ (x) /∂xn).
In that case, one has for all x and x̃ in Rn

φ (x̃) ≥ φ (x) +∇φ (x)
⊤
(x̃− x) .
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Note that if ∇φ (x) exists, then it is the only vector y ∈ Rn such that

φ (x̃) ≥ φ (x) + y⊤ (x̃− x) ∀x̃ ∈ Rn, (30)

indeed, setting x̃ = x + tei where ei is the ith vector of the canonical basis of
Rn, and letting t → 0+ yields yi ≤ ∂φ (x) /∂xi, while letting t → 0− yields
yi ≥ ∂φ (x) /∂xi. This motivates the definition of the subdifferential ∂φ (x) of
φ at x as the set of vectors y ∈ Rn such that relation (30) holds. Equivalently,
y ∈ ∂φ (x) holds if and only if

y⊤x− φ (x) ≥ max
x̃

{
y⊤x̃− φ (x̃)

}
that is, if and only if

y⊤x− φ (x) = max
x̃

{
y⊤x̃− φ (x̃)

}
.

The above development highlights a special role for the function φ∗ appear-
ing in the expression above

φ∗ (y) = max
x̃

{
y⊤x̃− φ (x̃)

}
which is called the Legendre-Fenchel transform of φ. By construction,

φ (x) + φ∗ (y) ≥ y⊤x.

This is called Fenchel’s inequality; as we just saw, it is an equality if and only
if y ∈ ∂φ (x). In fact, the subdifferential can also be defined as

∂φ (x) = argmax
y

{
y⊤x− φ∗ (y)

}
.

Finally, the double Legendre-Fenchel transform of a convex function φ (the
transform of the transform) is simply φ itself. As a consequence, the subgradi-
ents of φ and φ∗ are inverses of each other. In particular, if φ and φ∗ are both
differentiable then

(∇φ)−1 = ∇φ∗.

To see this, remember that y ∈ ∂φ (x) if and only if φ (x) + φ∗ (y) = y⊤x;
but since φ∗∗ = φ, this is equivalent to φ∗∗ (x) + φ∗ (y) = y⊤x, and hence to
x ∈ ∂φ∗ (y). As a result, the following statements are equivalent:

(i) φ (x) + φ∗ (y) = x⊤y;

(ii) y ∈ ∂φ (x);

(iii) x ∈ ∂φ∗ (y).
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